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Measuring and calculating methods of critical stress intensity factors (SIFs) have become
hot topics which attracted large attention recently. In this work, anti-symmetrical four-point
bending tests of cracked fine-grained concrete specimens were conducted experimentally and
numerically by using a computer-controlled universal testing machine and ABAQUS code.
A comparative study of the calculation method of pure mode II stress intensity factor of
a fine-grained concrete was performed by utilizing the conventional finite element method
(FEM) in two and three dimensions as well as the extended finite element method (XFEM)
in three dimensions. The results show that in three-dimensional models, the crack mode is
closest to the pure mode II at the center of specimen thickness. Pure mode II stress intensity
factors obtained by SEAM2D and XFEM3D are 1.013 and 1.0617 times that by SEAM3D,
respectively. Pure mode II stress intensity factors of the fine-grained concrete obtained by
the conventional FEM are more stable than that by XFEM. The number of mesh circles has
slight influence on the calculation results of pure mode II stress intensity factor.

Keywords: fine-grained concrete, critical stress intensity factor, J-integral, anti-symmetrical
four-point bending, FEM, XFEM

1. Introduction

Since Kaplan (1961) introduced fracture mechanics into concrete in 1961, fracture mechanics
of concrete has attracted large attention. Also, how to apply fracture mechanics to concrete
structures has been investigated by many researchers. Fracture mechanics of concrete has been
widely applied in construction engineering, and a remarkable progress has been obtained. In
fracture mechanics, the crucial issue is to analyze the stress and strain field in the vicinity of the
crack tip, and to obtain dominant parameters that control crack behavior, aiming at establishing
a reasonable fracture criterion.
As the stress intensity factor (SIF) exceeds the threshold value, i.e. the fracture toughness,

the crack will initiate and propagate, which could induce large engineering disasters. Therefore,
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determination of SIF has become an important issue in fracture mechanics. Therefore, the study
of the stress intensity factor is of great significance in the engineering.

Currently, many scholars have conducted a great deal of research on the stress intensity
factors of concrete. Braham and Buttlar (2009) investigated pure mode II fracture resistance
of asphalt concrete by performing an anti-symmetrical four-point loading test on the beam
specimen. Fett (1999) applied a weight function and a superposition method to solve the stress
intensity factor of pre-cracking plates under bending-tensile load. Golewski et al. (2012) used the
extended finite element method to simulate crack growth of concrete containing siliceous fly ash
under pure mode II fracturing. Dong et al. (2018) conducted a comparative study on utilizing
the stress intensity factor-based criterion to predict the mixed mode I-II crack propagation in
concrete. Wu et al. (2017) developed a flexibility determination method based on numerical
simulation to calculate the stress intensity factor and fracture toughness of concrete. Orowan
(1949) and Irwin (1957) claimed that there was a particular relationship between the energy
release ratio and stress intensity factor. Stys and Minch (1993) investigated the effect of mode II
stress intensity factor on fracture toughness by using a photo-elastic coating method for concrete.
However, less research is reported on performing a study on calculating pure mode II stress
intensity factor of fine-grained concrete under different numerical models by using ABAQUS
code.

The stress intensity factor K is usually applied to demonstrate the crack field intensity in lin-
ear elastic fracture mechanics analysis in engineering applications. The methods of determining
stress intensity factors include analytical methods, numerical methods and experimental meth-
ods. The analytical method can be used only to calculate simple problems, but most problems
need numerical solution to work out. Nowadays, the finite element method is widely employed
in the numerical solution of engineering problems, and how to solve the stress intensity factor
in the engineering has become more and more important. However, there is less research on
the study of pure mode II stress intensity factor of fine-grained concrete. In this paper, anti-
symmetrical four-point bending tests of a cracked fine-grained concrete specimen were carried
out by using a universal testing machine, whose stress intensity factors were computed with
a formula and ABAQUS code. Additionally, a comparative study of calculating pure mode II
stress intensity factor of fine-grained concrete was performed by utilizing the conventional finite
element method (FEM) in two and three dimensions, and the extended finite element method
(XFEM) (ABAQUS, 2016) in three dimensions. Furthermore, variation of the stress intensity
factor of concrete in the thickness direction and on different contours was studied. Also, the
effect of mesh circles in the vicinity of the crack tip on calculating SIF was investigated.

2. Experimentation

In order to obtain pure mode II fracture toughness (critical stress intensity factor) of fine-grained
concrete, tests of anti-symmetrical four-point bending (Wang et al., 2016) were conducted by
using cracked fine-grained concrete specimens and ABAQUS code.

2.1. Materials

Ordinary Portland Cement (OPC) with a strength grade of 42.5 MPa was utilized in this
experiment, and chemical and mineral composition as well as physical-mechanical parameters
are shown in Table 1-3. In the light of coarse aggregate blocking crack growth (Zhou et al., 2018,
2019b; Zhou and Zhu, 2019a) and increasing the dispersion of test results, fine river sand was
employed in the experimentation.
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Table 1. Chemical composition of cement

Chemical composition SiO2 Al2O3 CaO Fe2O3 MgO K2O SO3 TiO2 LOI
∗

Cement [%] 18.63 2.49 71.7 2.62 3.24 0.48 5.00 0.84 4.75
∗ Loss on ignition

Table 2. Mineral composition of cement

Mineral composition Ca3SiO5 Ca2SiO4 Ca2Fe1.40Al0.60O5 CaSO4 CaCO3

SemiQuant [%] 45 39 4 7 6

Table 3. Physical and mechanical properties of cement

Setting time Flexural strength Compressive Specific
Soundness [min] [MPa] strength [MPa] area Sb

Initial Final 3d 28d 3d 28d [m2/kg]

Pass 170 210 6.0 7.9 25.3 51.3 360

2.2. Specimen geometry and preparation

Fine-grained concrete was applied to fabricate specimens in this experiment, and the mix
proportion of cement, sand and water was 1:3.5:0.5, respectively, by mass. Initially, river sand
and cement were sent into a concrete mixer, which were stirred for about 5min. Then a certain
amount of water was added into the mixtures which were stirred for about 5min. Subsequently,
rectangular plastic moulds, having the internal dimension of 100mm×100mm×400mm, were
filled with concrete, then were vibrated on a shaking table for 40 seconds to eliminate bubbles
in concrete. After 24 h, the moulds were removed, and the concrete specimens were cured in the
water tank for 28 days at room temperature. Finally, the specimens were taken out from the
water tank and cut with a marble cutter to obtain the initial precrack as illustrated in Fig. 1,
whose depth was set as 30mm. The dimension and loading of the anti-symmetrical four-point
bending specimen is shown in Fig. 2.

Fig. 1. Schematic diagram of the pre-crack cutting procedure for ASFPB specimen [mm]

The anti-symmetrical four-point bending tests were carried out by a universal testing machine
whose loading rate was controlled by the displacement. In the light of a vast array of in-situ
tests and related literature (Wittmann et al., 1987; Zhang et al., 2009), the loading rate was set
as 0.05mm/min to make the precrack in fine-grained concrete propagate steadily.

The load distribution is mainly determined by S1 and S2 as shown in Fig. 2. Only when
appropriate S1 and S2 are chosen, pure mode II fracture can occur. Referring to the four-point
bending test in (Zhang et al., 2009), S1 and S2 were designed as 150mm and 30mm, respectively,
and the fracture modes occurred as shown in Fig. 3.
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Fig. 2. Specimen dimensions and loading conditions [mm]: (a) dimensions, (b) loading of the concrete
ASFPB specimen

Fig. 3. Fracture mode of concrete ASFPB specimens: (a) 1# specimen, (b) 2# specimen,
(c) 3# specimen, (d) 4# specimen

3. Introduction of calculation methods of SIFs

According to He et al. (1990), the stress intensity factor of anti-symmetrical four-point bending
(ASFPB) specimens can be calculated by

KII =
Q
√
πa

Bt
YII (3.1)

where Q is the shearing force at the crack tip, Q = (S2 − S1)P/(S2 + S1); P is the external
load; B, t and a denote width, thickness and crack length of the model, respectively; YII is a
normalized mode II SIF, also known as the shape factor, and YII is a function of the relative
crack length a/W , which can be calculated by ABAQUS code based on Rice’s J-integral (Rice,
1968).

3.1. J-integral in two dimensions

Two-dimensional J-integral is defined in quasi-static analysis as (ABAQUS, 2016)

J = lim
Γ→0

∫

Γ

nHq dΓ (3.2)
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where Γ is a contour which is initiating from one crack surface and finishing on another crack
surface, as illustrated in Fig. 4; q is the unit vector in the direction of virtual crack propagation;
n is the outward normal of the contour Γ . H is given by

H =W I− σ
∂u

∂u
(3.3)

where W denotes elastic strain energy for elastic material behavior, and is defined as elastic
strain energy density plus plastic dissipation for elastic-plastic or elastic-viscoplastic material
behavior.

Fig. 4. Contour plot of the evaluating J-integral

Referring to Shih et al. (1986), Eq. (3.2) can be rewritten as

J = −

∮

C+C++Γ+C−

mHq dΓ −

∫

C++C−

t
∂u

∂x
q dΓ (3.4)

where q is a plentifully smooth weight function in the domain surrounded by the closed contour,
and m is the outward normal of the region surrounded by the closed contour, as illustrated in
Fig. 5. m = −n on Γ , and t =mσ is the surface traction on C+ and C−.

Fig. 5. The region A is surrounded by the enclosed contour C + C+ + Γ + C−

The enclosed contour integral is converted into the domain integral by utilizing the divergence
theorem, namely

J = −

∫

A

∂

∂x
(Hq) dΓ −

∫

C++C−

t
∂u

∂x
q dΓ (3.5)

where A is the region surrounded by the enclosed contour C + C+ + Γ +C−.
Supposing that the balance is satisfied, W is a function of the mechanical strain, namely,

W =W (εm). Then, we obtain

∂

∂x
σ + f = 0

∂W

∂x
=
∂W

∂εm
∂εm

∂x
= σ
(∂ε

∂x
−
∂εth

∂x

)

(3.6)

where f and εth denote the body force per unit volume and the thermal strain, respectively.
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Substituting Eqs. (3.6) into Eq. (3.5) gives

J = −

∫

A

[

H
∂q

∂x
+
(

f
∂u

∂x
− σ
∂εth

∂x

)

q
]

dΓ −

∫

C++C−

t
∂u

∂x
q dΓ (3.7)

3.2. J-integral in three dimensions

Taking a tangential continuous front of the crack into account, the two-dimensional J-integral
could be expanded to three dimensions, as illustrated in Fig. 6. The local direction of fictitious
crack growth is still determined by q, which is perpendicular to the local crack front and is
located on the crack plane.

Fig. 6. Local orthogonal Cartesian coordinates defined at s point of the crack front

Approximately, as r tends towards 0, the states of path independence can be applicable
to any contour on the x1-x2 plane, which is perpendicular to the crack front at the point s.
Therefore, the J-integral defined on this plane could be expanded to a pointwise energy release
rate along the crack front as (ABAQUS, 2016)

J(s) = lim
Γ→0

∫

Γ

nHq dΓ (3.8)

For a fictitious crack advance λ(s) on the three-dimensional crack plane, the energy release
rate can be expressed as

J = lim
L
J(s)λ(s) ds = lim

Γ→0

∫

At

nHq dA (3.9)

where L is the considered crack front; dA denotes an area element on a vanishingly small tubular
surface surrounding the crack tip (namely, dA = dsdΓ ); n represents the outward normal of dA.

J could be computed by utilizing the region integral method like that applied in two di-
mensions. To do so, the surface integral in Eq. (3.9) is converted into a volume integral by
introducing a contour domain A0, outside the domain At, external domain Aends with which the
crack front ends, and the crack surfaces Acracks, as illustrated in Fig. 7.

A weight function q is introduced, whose magnitude is 0 on the surface A0 and is λ(s)q on
the surface At. q is supposed to vary smoothly between these values in the region A. q on Aends
is not tangential to the surface, which must be made so. This can be done in the ABAQUS code
by explicitly defining the surface normals. Subsequently, Eq. (3.9) can be rewritten as

J = −

∮

A

mHq dA−

∫

Aends+Acracks

t
∂u

∂x
q dA (3.10)
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Fig. 7. The volume domain V is enclosed by region A = At +A0 +Aends +Acracks

where m is the outward normal to the domain A. t = mσ is surface traction on the regions
Aends and Acracks.
In the light of the divergence theorem, we have

J = −

∫

V

[

H
∂q

∂x
+
(

f
∂u

∂x
− σ
∂εth

∂x

)

q
]

dV −

∫

Aends+Acracks

t
∂u

∂x
q dA (3.11)

In order to calculate J(s) at each node set P along the crack front line, the interpolation
functions like those utilized in the finite elements are applied to discretize λ(s)

λ(s) = NQ(s)λQ (3.12)

where λQ = 1 at P and all other λQ are equal to 0.
Substituting Eq. (3.12) into Eq. (3.11) gives

JP =
J
P

∫

LN
P ds

(3.13)

4. Model meshing

In this paper, the calculation of the stress intensity factor is investigated. Because the speci-
mens have large dimensions (100mm×100mm×400mm), the SIFs should be different along the
thickness of the crack tip. We adopted the conventional finite element method, and a three-
-dimensional seam (SEAM3D) crack model was established, and the mesh near the crack tip was
refined. The new extended finite element method (XFEM) (Golewski et al., 2012; Zhang and Bui,
2015; Roth et al., 2015) was applied, and a three-dimensional XFEM crack model without mesh
refinement near the crack tip was established. Here, a comparison study is performed between
the SIF calculated by the two-dimensional model (simplifying the three-dimensional problem
into a planar problem) and the SIF calculated by the three-dimensional model to investigate
the difference. Since XFEM cannot be used to calculate SIFs in two dimensions, the traditional
finite element method was employed, and a two-dimensional seam crack model (SEAM2D) with
mesh refinement near the crack tip was established.
The meshes of the three models are shown in Fig. 8, and the mesh size was mainly set to

5mm. In the two-dimensional SEAM2D model, the 6-node triangular element CPS6 was applied
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in the vicinity of the crack tip, and the 8-node quadrilateral element CPS8 was employed in the
rest zone. In the three-dimensional SEAM3D model, the 6-node linear triangular prism element
C3D6 was used in the vicinity of the crack tip, and the 8-node linear brick element C3D8R
(reduced integration, hourglass control) was applied in the rest zone.

Fig. 8. Meshes of the anti-symmetrical four-point bending specimen in different numerical models:
(a) SEAM3D, (b) XFEM3D, (c) SEAM2D

XFEM is a new crack simulation method introduced by the ABAQUS code. The crack path
does not depend on the element boundary, but it can be described by using the enrichment
finite elements. Therefore, the crack obtained by XFEM can pass through the whole element.
ABAQUS version 6.14 is utilized in this paper, which could support fracture flow, improve the
judgment method of crack initiation, support non-local stress field to determine the direction
of crack propagation and support the contour integral of the static XFEM crack. XFEM can
be utilized to simulate propagation of the static crack and calculate the contour integral in the
vicinity of the crack tip, in which the influence of residual stress could be considered.

5. Results and discussion

The experiment of anti-symmetrical four-point bending was conducted using a universal testing
machine, and pure mode II stress intensity factors were calculated by using the ABAQUS code.
Taking one concrete specimen subjected to anti-symmetrical four-point bending as an ex-

ample, the plot of the total force versus displacement is presented in Fig. 9. Then we can see
what is the evolution of the stress intensity factor during the process of reaching the critical
value.
The stress intensity factor is mainly used for brittle behavior of metals in specific fracture

applications. For brittle materials like concrete, damage and failure constitutive models are
mainly used, which are connected with typical failure criteria like Drucker-Prager, Lubliner etc.
in Eq. (5.1)1 and (5.1)2 (Jankowiak and Łodygowski, 2010; Xu, 2011). In addition, the stress
intensity factor is connected with strain energy density in the notch region, see Eq. (5.1)2 and
(5.1)3



Study of calculation method of pure mode II stress intensity factor... 259

Fig. 9. Curve of the total force versus displacement

f(I1, I2, I3) = 0 σij =
K
√
2πr
fij(θ) I1 =

√

6EW1
1− 2ν

(5.1)

where I1 denotes the first invariant of the stress tensor σij, J2 and J3 denote the second and
third invariant of the stress deviator sij, respectively, K denotes the stress intensity factor, r and
θ denote the polar coordinates in the vicinity of crack tip, fij(θ) denotes the direction parameter
of θ, E and ν denote Young’s modulus and Poisson’s ratio, respectively, W1 denotes the strain
energy density of the volume change.

5.1. Variation of SIF values along specimen thickness

For three-dimensional problems, the stress intensity factor (SIF) may vary along the specimen
thickness. In this study, the SIFs were calculated by using XFEM3D and SEAM3D, respectively,
and the results of SIF values along the specimen thickness, i.e. Z-direction, are presented in
Fig. 10. It can be seen that the SIFs KI , KII and KIII obtained by both methods vary along
the specimen thickness; the SIFs KI and KIII are very small comparing to KII values. This
indicates that the crack mode is closest to pure mode II, especially near the center of the specimen
thickness. Therefore, the SIF should be determined at the center of the specimen thickness.

It can be seen that the variation of KII values calculated by SEAM
3D is larger than that

by XFEM3D. In the calculation results by SEAM3D in Fig. 10a, one can find that both KI and
KIII are close to zero near the specimen thickness center, whereas, for in results by XFEM

3D in
Fig. 10b, only KIII is close to zero, and KI is greater than 0.1MPa

√
m. This indicates that the

calculation results by SEAM3D are much closer to the real values of SIF than those by XFEM3D.
Therefore, the SIF at the specimen thickness center will be analyzed in the subsequent study.

5.2. SIF values on different integration contours in the specimen thickness center

The SIF values may vary with integration contours. In this study, the SIFs with different
integration contours were calculated by the aforementioned three models, and the results are
presented in Fig. 11. One can find that the SIFs by SEAM2D in Fig. 11a are stable, and KI
and KII are kept constant as the integration contour number increases. The SIFs by SEAM

3D

in Fig. 11b show that as the integration contour number is 1, the KII value is the smallest,
and as the contour number is 3, the KII value is the highest. As the contour number is larger
than 3, the KII value decreases with the increase of the contour number, but the KI and KIII
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Fig. 10. Variation of SIFs in Z-direction: (a) SEAM3D, (b) XFEM3D

are kept constant. The SIFs by XFEM3D in Fig. 11c show that all the KI and KII values vary
significantly with the contour numbers, but KIII is constantly zero.

KII results by the three methods are compared in Fig. 11d. It can be seen that the results
by the SEAM2D are stable, and the results by the SEAM3D vary slightly, but the results by the
XFEM3D vary largely, and the maximum difference between the KII values by 8-contour and
by 9-contour is 46%. Therefore, the XFEM3D should not be used to calculate SIF values.

Generally, the calculation results of KII by SEAM
3D are less than those by SEAM2D, and

when the integration contour is in the specimen thickness center, the difference between these
two methods is 1.371%.

5.3. SIF values for different mesh refinement circle numbers in the specimen thickness

center

Taking SEAM3D as an example, one, three, six and nine circle models are designed to investi-
gate the influence of mesh refinement circles on calculating mode II SIF. The circles distribution
is shown in Fig. 12, where mode II SIF is determined at the center of the specimen thickness.

Nine contours enclosing the crack tip are designed to calculate pure mode II SIF using the
ABAQUS code. In the light of SIFs on the innermost and outermost contour, they fluctuate
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Fig. 11. SIFs on different contours using three numerical models: (a) SEAM2D, (b) SEAM3D,
(c) XFEM3D, (d) comparison

Fig. 12. Nine and three integration circle contours in the vicinity of the crack tip (SEAM3D):
(a) 1 circle contour, (b) 3 circle contours, (c) 6 circle contours, (d) 9 circle contours

considerably, and were discarded, and the average of SIFs on the rest seven contours is taken
as K. The analysis results are revealed in Fig. 13. It can be observed that mode II SIFs calculated
by the one, three and six circle models fluctuate considerably. However, the SIFs calculated by
the nine circle model fluctuate slightly, and the SIF is determined by the average of SIFs on
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the rest seven contours. The average mode II SIFs are present in Table 4. The maximum and
minimum mode II SIFs KII are 0.6309MPa

√
m and 0.6107MPa

√
m using 1 circle and 9 circle

models, respectively. The maximum difference between these circle models is 2.052%.

Fig. 13. Mode II SIFs KII varying along contour n for different mesh refinement circles in the vicinity
of the crack tip (SEAM3D)

Table 4. Average mode II stress intensity factor KII for different number of circles

Number of circles 1 3 6 9

Average mode II SIF KII [MPa
√
m] 0.6179 0.6209 0.621 0.6309

5.4. Verification of meshing independency

Five mesh sizes (1mm, 3mm, 5mm, 7mm and 10mm) are selected to investigate the effect of
mesh size on the calculation of SIFs. The mesh models are shown in Fig. 14. There is little differ-
ence (about 1.371% gap) between SIFs calculated by the two-dimensional and three-dimensional
model in the conventional computation of SIFs. In order to improve the calculation efficiency
and considerably reduce the amount of computation, the two-dimensional model is applied to
verify the mesh independency. The number of elements and the average SIF in different models
are illustrated in Table 5. It can be found that there is almost no difference for pure mode SIF
KII for different mesh size. When the mesh size decreases, the number of elements increases
enormously, which increases the amount of calculation considerably. The meshing independence
of these models is pretty good. Here we select a model with medium mesh size of 5mm, the
calculation results are accurate, the number of elements is moderate, and the calculation amount
is acceptable.

Table 5. Number of elements and pure mode II stress intensity factor KII for different element
sizes

Mesh size [mm] 1 3 5 7 10

Element number 49206 5356 2293 1307 761

KII [MPa
√
m] 0.6396 0.6396 0.6395 0.6396 0.6394
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Fig. 14. Model meshes for different element size (SEAM2D); mesh size: (a) 10mm, (b) 7mm, (c) 5mm,
(d) 3mm, (e) 1mm

6. Conclusions

In this paper, pure mode II stress intensity factors of fine-grained concrete were investigated by
performing anti-symmetrical four-point bending experimentally and numerically. The following
conclusions are obtained:

• In the three-dimensional numerical models, the crack mode is closest to pure mode II at
the center of specimen thickness.

• Pure mode II stress intensity factor obtained by SEAM2D and XFEM3D is 1.36% and
6.17% respectively larger than that by SEAM3D.

• Pure mode II stress intensity factors of concrete obtained by the conventional finite element
method (FEM) has better stability than that by XFEM.

• The number of mesh refinement circles has slight influence on the calculation of pure
mode II stress intensity factor.
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